Journal of Geodesy | 2019

Determination of GNSS pseudo-absolute code biases and their long-term combination

 
 
 
 
 
 

Abstract


With the modernization of GPS and the establishment of additional global navigation satellite system (GNSS) constellations, such as Galileo, Beidou, and QZSS, more and more GNSS satellites are available transmitting on various frequencies with multiple signal modulations. In order to cope with the increasing number of observation types, the commonly used differential approach becomes more and more difficult regarding book-keeping. The actually processed original observation types have to be known in advance to define a linearly independent set of differential signal biases (DSB) while processing GNSS data. An alternative treatment of code biases is the usage of observable-specific signal biases (OSB) where the setup and correction of biases become trivial. Potential dependencies of the bias parameters can be considered after the setup of normal equations (NEQs), e.g., immediately before it is inverted. The code bias results are retrieved on a daily basis and their NEQs stored. This allows to combine bias results from various sources (or analysis lines) and different time periods. By combining all daily bias NEQs, we have generated a coherent multi-year bias solution from 2000 to 2017 with one common datum. If absolute receiver calibrations are available, the multi-year solution could be aligned to those receivers and thus could lead to an absolute estimation of the code biases. Finally, the estimated satellite OSBs are used for the receiver compatibility grouping testing which receivers are compatible with which bias sets. This may be achieved by solving for so-called OSB multipliers.

Volume None
Pages 1-14
DOI 10.1007/s00190-019-01262-w
Language English
Journal Journal of Geodesy

Full Text