Analytical and Bioanalytical Chemistry | 2021

A high coverage pseudotargeted lipidomics method based on three-phase liquid extraction and segment data-dependent acquisition using UHPLC-MS/MS with application to a study of depression rats

 
 
 
 
 

Abstract


Pseudotargeted analysis combines the advantages of untargeted and targeted lipidomics methods based on chromatography-mass spectrometry (MS). This study proposed a comprehensive pseudotargeted lipidomics method based on three-phase liquid extraction (3PLE) and segment data-dependent acquisition (SDDA). We used a 3PLE method to extract the lipids with extensive coverage from biological matrixes. 3PLE was composed of one aqueous and two organic phases. The upper and middle organic phases enriched neutral lipids and glycerophospholipids, respectively, combined and detected together. Besides, the SDDA strategy improved the detection of co-elution ions in the lipidomics analysis. A total of 554 potential lipids were detected by the developed approach in both positive and negative modes using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Compared with the conventional liquid-liquid extraction (LLE) approaches, including methyl tert-butyl ether (MTBE) and Bligh-Dyer (BD) methods, 3PLE combined with SDDA significantly increased the lipid coverage 87.2% and 89.7%, respectively. Also, the proposed pseudotargeted lipidomics approach exhibited higher sensitivity and better repeatability than the untargeted approach. Finally, we applied the established pseudotargeted method to the plasma lipid profiling from the depressed rats and screened 61 differential variables. The results demonstrated that the pseudotargeted method based on 3PLE and SDDA broadened lipid coverage and improved the detection of co-elution ions with excellent sensitivity and precision, indicating significant potential for the lipidomics analysis.

Volume 413
Pages 3975 - 3986
DOI 10.1007/s00216-021-03349-w
Language English
Journal Analytical and Bioanalytical Chemistry

Full Text