Microbial ecology | 2021

Effect of Root Diameter on the Selection and Network Interactions of Root-Associated Bacterial Microbiomes in Robinia pseudoacacia L.

 
 
 
 
 
 
 
 
 

Abstract


The high plasticity of root morphology, physiology, and function influences root-associated microbiomes. However, the variation in root-associated microbiome diversity and structures in response to root diameter at different root depths remains poorly understood. Here, we selected black locust (Robinia pseudoacacia L.) as a model plant to investigate the selection and network interactions of rhizospheric and root endophytic bacterial microbiomes associated with roots of different diameters (1, 1-2, and > 2 mm) among root depths of 0-100 cm via the Illumina sequencing of the 16S rRNA gene. The results showed that the alpha diversity of the root-associated bacterial communities decreased with increasing root diameters among different root depths; fewer orders with higher relative abundance, especially in the endosphere, were enriched in association with coarse roots (> 2 mm) than fine roots among root depths. Furthermore, the variation in the enriched bacterial orders associated with different root diameters was explained by bulk soil properties. Higher co-occurrence network complexity and stability emerged in the rhizosphere microbiomes of fine roots than those of coarse roots, in contrast to the situation in the endosphere microbiomes. In particular, the endosphere of roots with a diameter of 1-2 mm exhibited the lowest network complexity and stability and a high proportion of keystone taxa (e.g., Cytophagia, Flavobacteriia, Sphingobacteriia, β-Proteobacteria, and γ-Proteobacteria), suggesting a keystone taxon-reliant strategy in this transitional stage. In summary, this study indicated that root diameter at different root depths differentially affects rhizospheric and endophytic bacterial communities, which implies a close relationship between the bacterial microbiome, root function, and soil properties.

Volume None
Pages None
DOI 10.1007/s00248-020-01678-4
Language English
Journal Microbial ecology

Full Text