Applied microbiology and biotechnology | 2021

Interactive effects of light quality and culturing temperature on algal cell size, biomass doubling time, protein content, and carbohydrate content.

 
 
 
 
 

Abstract


Light management strategy can be used to improve algal biomass and nutrient production. However, the response of algal metabolism to different light qualities, especially their interaction with other environmental factors, is not well understood. This study focuses on the interactive effects of light quality and culturing temperature on algal protein content and carbohydrate content of C. reinhardtii. Three LED light sources (blue light, red-orange light, and white-yellow light) were applied to grow algae in batch cultures with a light intensity of 105 μmol/m2s under the temperatures of 24 °C to 32 °C. The protein and carbohydrate content were measured in both the late exponential growth phase and the late stationary growth phase. The results revealed that there was an interactive effect of light quality and culturing temperature on the protein and carbohydrate content. The combined conditions of blue light and a temperature of 24 °C or 28 °C, which induced a larger algal cell size with a prolonged cell cycle and a low division rate, resulted in the highest protein content; the protein mass fraction and concentration were 32% and 52% higher than that under white-yellow light at 32 °C. The combined conditions of red-orange light and a temperature of 24 °C, which promoted both the cell division and size growth, enhanced the carbohydrate content; the carbohydrate mass fraction and concentration were 161% and 155% higher than that under white-yellow light at 24 °C. When there was temperature stress (32 °C) or nutrient stress, the effect of light quality reduced, and the difference of protein and carbohydrate content among the three light qualities decreased. KEY POINTS: • Studied light quality-temperature interactive effect on protein, carbohydrate synthesis. • Protein content was high under low cell division rate. • Carbohydrate content was high under high cell division and cell size growth rate.

Volume None
Pages None
DOI 10.1007/s00253-020-11068-y
Language English
Journal Applied microbiology and biotechnology

Full Text