Coral Reefs | 2019

New high-resolution sea surface temperature forecasts for coral reef management on the Great Barrier Reef

 
 

Abstract


Great Barrier Reef (GBR) marine park managers rely on seasonal forecasts of sea surface temperature (SST) to better inform and coordinate their management responses to mass coral bleaching events. The Bureau of Meteorology’s new seasonal forecast model ACCESS-S1 is well placed for integration in marine park managers’ risk management systems, with model benefits including high ocean resolution and probabilistic forecasts from a 99 member ensemble. The SST forecast skill was assessed for the GBR region against satellite SST observations over the model hindcast period 1990–2012. ACCESS-S1 was most successful in forecasting larger warm anomalies in the GBR associated with climate drivers that persisted over many months (e.g. ENSO events). The model consistently performed better than persistence reference forecasts over the critical summer period. The model was less successful in forecasting short-term events driven by regional weather patterns, with a reduction in skill between pre-monsoon and post-monsoon onset. Forecasts in the northern GBR often exhibited the highest skill. The model was successfully able to predict SST anomalies associated with the peak of the East Australian Current. The ability of the model to discriminate between two dichotomous events (whether or not a threshold is exceeded) ranged from excellent at lead time 0 (first month forecast) to reasonable at lead times 1 and 2. Increasing the ensemble size using time-lagged ensemble members showed improvement in probabilistic skill for warm anomaly events. Model reliability showed good ability in matching the observed frequency for warm anomaly events, although slightly overconfident. The results demonstrate that ACCESS-S1 can provide skilful SST forecasts in support of coral reef management activities on sub-seasonal to seasonal timescales. Seasonal SST forecasts from ACCESS-S1 are currently available at the Bureau of Meteorology’s website for the GBR and greater Coral Sea region.

Volume 38
Pages 1039 - 1056
DOI 10.1007/s00338-019-01829-1
Language English
Journal Coral Reefs

Full Text