Applied Physics A | 2019

Epitaxial characteristics of MBE-grown ZnTe thin films on GaAs (211)B substrates

 
 

Abstract


Highly crystalline ZnTe thin films were grown on GaAs (211)B substrates by molecular beam epitaxy (MBE) for potential applications such as MCT detectors and optoelectronic devices. We investigated the effects of Te to Zn (VI/II) flux ratio on the quality of ZnTe films in terms of crystal orientation, elemental composition, surface roughness, and dislocation density. Atomic concentrations of Zn, Te, and oxygen complexes due to oxygen contamination on the film surfaces were analyzed by X-ray photoelectron spectroscopy. X-ray double crystal rocking curve full width half maximum (FWHM) of ZnTe (422) peak was observed as 233 arcseconds for a 1.66\xa0μm thick film, which indicates high crystallinity. Wet chemical etching was applied to the films to quantify the crystal quality by calculating etch pit densities (EPD) from scanning electron microscope images. A very low EPD value of 1.7\u2009×\u2009107\xa0cm−2 was measured. Additionally, the root mean square roughness values, obtained from atomic force microscopy topography images were in the range of 10–25\xa0nm. These values were supported by FWHM values of red green blue color intensity histograms obtained from Nomarski Microscope images. The results of our analyses indicate that the VI/II flux ratios of 4 and 4.5 produce the best quality ZnTe films on GaAs (211)B substrates.

Volume 125
Pages 1-9
DOI 10.1007/s00339-019-3043-5
Language English
Journal Applied Physics A

Full Text