Engineering with Computers | 2019

Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory

 
 
 
 

Abstract


In this article, the free vibration response of sandwich plates with porous electro-magneto-elastic functionally graded (MEE-FG) materials as face sheets and functionally graded carbon nanotube-reinforced composites (FG-CNTRC) as core is investigated. To this end, four-variable shear deformation refined plate theory is exploited. The properties of functionally graded material plate are assumed to vary along the thickness direction of face sheets according to modified power-law expression. Furthermore, properties of FG-CNTRC layer are proposed via a mixture rule. Hamilton’s principle with a four-variable tangential–exponential refined theory is used to obtain the governing equations and boundary conditions of plate. An analytical solution approach is utilized to get the natural frequencies of embedded porous FG plate with FG-CNTRC core subjected to magneto-electrical field. A parametric study is led to fulfill the effects of porosity parameter, external magnetic potential, external electric voltage, types of FG-CNTRC, and different boundary conditions on dimensionless frequencies of porous MEE-FG sandwich plate. It is noteworthy that the numerical consequences can serve as benchmarks for future investigations for this type of structures with porous mediums.

Volume None
Pages 1 - 16
DOI 10.1007/s00366-019-00864-4
Language English
Journal Engineering with Computers

Full Text