Climate Dynamics | 2019

Is the subtropical jet shifting poleward?

 
 
 
 

Abstract


The tropics are expanding poleward at about $$0.5{^\\circ }$$ 0.5 ∘ per decade in observations. This poleward expansion of the circulation is consistently reported using Hadley cell edge metrics and lower-atmospheric tropical edge metrics. However, some upper-atmospheric tropical metrics report smaller trends that are often not significant. One such upper-atmospheric metric is the subtropical jet latitude, which has smaller trends compared to the Hadley cell edge. In this study we investigate the robustness of the weak trends in the subtropical jet position by introducing a new method for locating the subtropical jet, and examining the trends and variability of the subtropical jet latitude. We introduce the tropopause gradient method based on the peak gradient in potential temperature along the dynamic tropopause. Using this method we find the trends in the subtropical jet latitude are indeed much smaller than $$0.5{^\\circ }$$ 0.5 ∘ per decade, consistent with previous studies. We also find that natural variability within the subtropical jet latitude would not prevent trends from being detected if they were similar to the Hadley cell edge, as trends greater than 0.24 $${^\\circ }$$ ∘ per decade could reliably be detected using monthly data or 0.09 $${^\\circ }$$ ∘ per decade using daily data. Despite the poleward expansion of the tropics, there is no robust evidence to suggest the subtropical jet is shifting poleward in either hemisphere. Neither the current diagnostic methods nor natural variability can account for the small subtropical jet trends. The most likely explanation, which requires further investigation, is that the subtropical jet position is not tied dynamically to the Hadley cell edge.

Volume 54
Pages 1741-1759
DOI 10.1007/s00382-019-05084-6
Language English
Journal Climate Dynamics

Full Text