Journal of Neurology | 2021

Subthalamic deep brain stimulation affects heading perception in Parkinson’s disease

 
 
 
 
 
 
 
 
 

Abstract


Parkinson’s disease (PD) presents with visuospatial impairment and falls. It is critical to understand how subthalamic deep brain stimulation (STN DBS) modulates visuospatial perception. We hypothesized that DBS has different effects on visual and vestibular perception of linear motion (heading), a critical aspect of visuospatial navigation; and such effects are specific to modulated STN location. Two-alternative forced-choice experiments were performed in 14 PD patients with bilateral STN DBS and 19 age-matched healthy controls (HC) during passive en bloc linear motion and 3D optic-flow in immersive virtual reality measured vestibular and visual heading. Objective measure of perception with Weibull psychometric function revealed that PD has significantly lower accuracy [L: 60.71 (17.86)%, R: 74.82 (17.44)%] and higher thresholds [L: 16.68 (12.83), R: 10.09 (7.35)] during vestibular task in both directions compared to HC (p\u2009<\u20090.05). DBS significantly improved vestibular discrimination accuracy [81.40 (14.36)%] and threshold [4.12 (5.87), p\u2009<\u20090.05] in the rightward direction. There were no DBS effects on the slopes of vestibular psychometric curves. Visual heading perception was better than vestibular and it was comparable to HC. There was no significant effect of DBS on visual heading response accuracy or discrimination threshold (p\u2009>\u20090.05). Patient-specific DBS models revealed an association between change in vestibular heading perception and the modulation of the dorsal STN. In summary, DBS may have different effects on vestibular and visual heading perception in PD. These effects may manifest via dorsal STN putatively by its effects on the cerebellum.

Volume None
Pages 1 - 16
DOI 10.1007/s00415-021-10616-4
Language English
Journal Journal of Neurology

Full Text