Planta | 2019

Apple AP2/EREBP transcription factor MdSHINE2 confers drought resistance by regulating wax biosynthesis

 
 
 
 
 
 
 
 

Abstract


Main conclusionThis study showed that AP2/EREBP transcription factor MdSHINE2 functioned in mediating cuticular permeability, sensitivity to abscisic acid (ABA), and drought resistance by regulating wax biosynthesis.Plant cuticular wax plays crucial roles in protecting plants from environmental stresses, particularly drought stress. Many enzymes and transcription factors involved in wax biosynthesis have been identified in plant species. In this study, we identified an AP2/EREBP transcription factor, MdSHINE2 from apple, which is a homolog of AtSHINE2 in Arabidopsis. MdSHINE2 was constitutively expressed at different levels in various apple tissues, and the transcription level of MdSHINE2 was induced substantially by abiotic stress and hormone treatments. MdSHINE2-overexpressing Arabidopsis exhibited great change in cuticular wax crystal numbers and morphology and wax composition of leaves and stems. Moreover, MdSHINE2 heavily influenced cuticular permeability, sensitivity to abscisic acid, and drought resistance.

Volume 249
Pages 1627-1643
DOI 10.1007/s00425-019-03115-4
Language English
Journal Planta

Full Text