Molecular genetics and genomics : MGG | 2021

Analysis of natural variation of the rice blast resistance gene Pike and identification of a novel allele Pikg.

 
 
 
 
 
 
 
 
 

Abstract


Plant major resistance (R) genes are effective in detecting pathogen signal molecules and triggering robust defense responses. Investigating the natural variation in R genes will allow identification of the critical amino acid residues determining recognition specificity in R protein and the discovery of novel R alleles. The rice blast resistance gene Pike, comprising of two adjacent CC-NBS-LRR genes, namely, Pike-1 and Pike-2, confers broad-spectrum resistance to Magnaporthe oryzae. Here, we demonstrated that Pike-1 determined Pike-specific resistance through direct interaction with the pathogen signal molecule AvrPik. Analysis of natural variation in 79 Pike-1 variants in the Asian cultivated rice Oryza sativa and its wild relatives revealed that the CC and NBS regions, particularly the CC region of the Pike-1 protein were the most diversified. We also found that balancing selection had occurred in O. sativa and O. rufipogon to maintain the genetic diversity of the Pike-1 alleles. By analysis of amino acid sequences, we identified 40 Pike-1 variants in these rice germplasms. These variants were divided into three major groups that corresponded to their respective clades. A new Pike allele, designated Pikg, that differed from Pike by a single amino acid substitution (D229E) in the Pike-1 CC region of the Pike protein was identified from wild rice relatives. Pathogen assays of Pikg transgenic plants revealed a unique reaction pattern that was different from that of the previously identified Pike alleles, namely, Pik, Pikh, Pikm, Pikp, Piks and Pi1. These findings suggest that minor amino acid residues in Pike-1/Pikg-1 determine pathogen recognition specificity and plant resistance. As a new blast R gene derived from rice wild relatives, Pikg has potential applications in rice breeding.

Volume None
Pages None
DOI 10.1007/s00438-021-01795-w
Language English
Journal Molecular genetics and genomics : MGG

Full Text