Oecologia | 2021

Colonization history meets further niche processes: how the identity of founders modulates the way predation structure fouling communities.

 
 
 

Abstract


Community assembly relies on deterministic niche-based processes (e.g., biotic interactions), and stochastic sources of unpredictable variation (e.g., colonization history), that combined will influence late-stage community structure. When community founders present distinct functional traits and a colonization-competition trade-off is not operating, initial colonization can result in late-stage assemblages of variable diversity and composed by different species sets, depending if early colonizers facilitate or inhibit subsequent colonization and survival. By experimentally manipulating the functional identity of founders and predators access during the development of fouling communities, we tested how founder traits constrain colonization history, species interactions and thereby regulate community diversity. We used as founders functionally different fouling organisms (colonial and solitary ascidians, and arborescent and flat-encrusting bryozoans) to build experimental communities that were exposed or protected against predation using a caging approach. Ascidians and bryozoans are pioneer colonizers in benthic communities and also good competitors, but the soft-body of ascidians makes them more susceptible to predators than mineralized bryozoans. When ascidians were founders, their dominance (but not richness) was reduced by predation, resulting in no effects of predators on overall diversity. Conversely, when bryozoans were founders, both space limitation and predator effects resulted in species-poor communities, with reduced number and cover of ascidian species and high overall dominance at the end of the experiment. We, thus, highlight that current species interactions and colonization contingencies related to founder identity should not be viewed as isolated drivers of community organization, but rather as strongly interacting processes underlying species distribution patterns and diversity.

Volume None
Pages None
DOI 10.1007/s00442-021-04996-7
Language English
Journal Oecologia

Full Text