Bioprocess and Biosystems Engineering | 2021

Fabrication of silica on chitin in ambient conditions using silicatein fused with a chitin-binding domain

 
 
 
 

Abstract


High temperatures, harsh pH conditions, and toxic chemicals involved in the conventional synthesis and coating of silica limit the fabrication of new-generation hybrid materials immobilizing live cells and biomolecules such as enzymes and drugs. This hinders the application of inorganic–organic biohybrid materials in various fields, including bioelectronics, energy generation, and biomedicine. Silicatein, an enzyme found in siliceous sponges, catalyzes the polymerization of silica under mild conditions, that is, at room temperature and neutral pH. Silicatein was fused with a chitin-binding domain (ChBD) to selectively bind the fusion silicatein on the chitin material and with a small soluble tag called InakC, a hydrophilic protein from Pseudomonas syringae, to control the unfavorable aggregation of silicatein. The fusion silicatein was soluble in aqueous media and was successfully found to be adsorbed on the chitin material. The immobilized fusion silicatein acted as an interfacial catalyst to fabricate silica on chitin under ambient conditions. This technique can be used to fabricate inorganic–organic hybrid materials to immobilize biomolecules and can be applied to develop novel biocatalytic systems, biosensors, and tissue culture scaffolds.

Volume 44
Pages 1883 - 1890
DOI 10.1007/s00449-021-02568-w
Language English
Journal Bioprocess and Biosystems Engineering

Full Text