Bioprocess and Biosystems Engineering | 2021

Enhanced refractory organics removal by sponge iron-coupled microbe technology: performance and underlying mechanism analysis

 
 
 
 
 
 

Abstract


Sponge iron (SFe) is a zero-valent iron (Fe0) composite with a high-purity and porous structure. In this study, SFe was coupled with microorganisms that were gradually domesticated to form a Fe0/iron-oxidizing bacteria system (Fe0-FeOB system). The enhancement effect of the Fe0-FeOB system on refractory organics was verified, the mechanism of its strengthening action was investigated, and the relationship and influencing factors between the Fe0 and microorganisms were revealed. The average removal rates of the Fe0-FeOB system were 8.98%, 5.69%, and 40.67% higher than those of the SBR system for AF, AN, and NB wastewater treatment, respectively. With the addition of SFe, the microbial community structure was gradually enhanced with a large number of FeOB were detected. Moreover, the bacteria with strong iron corrosion and Fe(II) oxidation abilities plays a critical role in improving the Fenton-like effect. Interestingly, the variation trend of ⋅OH was fairly consistent with that of Fe(II). Thus, the main drivers of the Fenton-like effect are biological corrosion and metabolism. Consequently, microbial degradation and Fenton-like effect contributed to the degradation performance of the Fe0-FeOB system. Among them, the microbial degradation accounted for 96.09%, of which the biogenic Fenton effect accounted for 8.9%, and the microbial metabolic activity accounted for 87.19%. However, the augmentation of the Fe0-FeOB system was strongly dependent on SFe for the strengthening effect of microorganisms disappeared after leaving the SFe 35 days.

Volume None
Pages 1 - 14
DOI 10.1007/s00449-021-02645-0
Language English
Journal Bioprocess and Biosystems Engineering

Full Text