Microchimica Acta | 2021

Defect-enhanced electrochemical property of h-BN for Pb2+ detection

 
 
 
 

Abstract


A new strategy has been developed for the determination of trace lead ions (Pb2+) based on hexagonal boron nitride (h-BN) laden with point defect. The defect-laden boron nitride (D-BN) was synthesized by a thermal polymerization route, in which melamine borate was used as a precursor. The defect microstructure was confirmed by photoluminescence (PL) and x-ray diffraction (XRD) techniques. As compared with h-BN, the D-BN-modified glassy carbon electrode (GCE) showed an enhanced electrochemical response towards Pb2+ peaking at −\u20090.551 V (vs. SCE), which was evidenced by linear sweep anodic stripping voltammetry (LSASV) results. The point defect plays a pivotal role in the electrocatalytic reaction process, which can mediate the electronic structure and surface properties of h-BN. Accordingly, the sensor presented a low detection limit of 0.15 μg/L towards Pb2+ and a wide linear response concentration range from 0.5 to 400 μg/L (correlation coefficient\u2009=\u20090.995). In view of its superior selectivity, stability, and reproducibility, the proposed method was applied for Pb2+ determination in real samples and exhibited satisfactory results. This work provides insight for the construction of electrochemical sensor with high-performance by engineering defects of modifying materials. Defect-loaden h-BN exhibited enhanced electrocatalytic redox reaction towards lead ions and thus a novel Pb2+ sensor with high performances was constructed. Defect-loaden h-BN exhibited enhanced electrocatalytic redox reaction towards lead ions and thus a novel Pb2+ sensor with high performances was constructed.

Volume 188
Pages None
DOI 10.1007/s00604-020-04691-z
Language English
Journal Microchimica Acta

Full Text