Microchimica Acta | 2021

One-step synthesis of N, S-doped carbon dots with orange emission and their application in tetracycline antibiotics, quercetin sensing, and cell imaging

 
 
 
 
 
 

Abstract


Water soluble N, S-doped carbon dots (N, S-CDs) with orange emission were synthesized from basic fuchsin and sulfosalicylic acid by the typical hydrothermal route. Based on the inner filter effect (IFE), the prepared N, S-CDs can be innovatively developed as an effective “signal-off” multifunctional sensing platform for sensitive determination of tetracycline antibiotics (for example, chlortetracycline (CTC)) and quercetin. The proposed sensor was utilized to realize the determination of CTC in water and milk samples and quercetin in beer sample (λex = 375 nm, λem = 605 nm) with satisfactory recoveries and relative standard deviations (RSD). The linear range and detection limit (LOD) of CTC is 1.24–165 μM and 32.36 nM, respectively. For quercetin, the linear ranges are 0.98–34 μM and 34–165 μΜ, and the LOD is 6.87 nM (3σ/m). By virtue of the good biocompatibility and long-wavelength emission, N, S-CDs were also used in the imaging of oocystis cells and yeast cells, which demonstrated promising applicability for bio-imaging and sensing. In this paper, N, S-doped carbon dots (N, S-CDs) with orange emission (λem = 605 nm) were synthesized from basic fuchsin and sulfosalicylic acid. Based on the inner filter effect (IFE), the prepared N, S-CDs can be innovatively developed as an effective “signal-off” multifunctional sensing platform for the sensing of tetracycline antibiotics (for example: chlortetracycline (CTC)) and quercetin. The sensor has been successfully applied to the determination of CTC in water and milk samples and quercetin in beer sample (λex = 375 nm, λem = 605 nm). The linear range and detection limit (LOD) of CTC is 1.24-165 μM and 32.36 nM respectively. For quercetin, the linear ranges are 0.98-34 μM and 34-165 μΜ, and the LOD is 6.87 nM (3σ/m). In addition, due to the characteristics of good biocompatibility and long-wavelength emission, the N, S-CDs were also used in the imaging of oocystis cells and yeast cells, which demonstrated promising applicability for bioimaging and sensing. In this paper, N, S-doped carbon dots (N, S-CDs) with orange emission (λem = 605 nm) were synthesized from basic fuchsin and sulfosalicylic acid. Based on the inner filter effect (IFE), the prepared N, S-CDs can be innovatively developed as an effective “signal-off” multifunctional sensing platform for the sensing of tetracycline antibiotics (for example: chlortetracycline (CTC)) and quercetin. The sensor has been successfully applied to the determination of CTC in water and milk samples and quercetin in beer sample (λex = 375 nm, λem = 605 nm). The linear range and detection limit (LOD) of CTC is 1.24-165 μM and 32.36 nM respectively. For quercetin, the linear ranges are 0.98-34 μM and 34-165 μΜ, and the LOD is 6.87 nM (3σ/m). In addition, due to the characteristics of good biocompatibility and long-wavelength emission, the N, S-CDs were also used in the imaging of oocystis cells and yeast cells, which demonstrated promising applicability for bioimaging and sensing.

Volume 188
Pages None
DOI 10.1007/s00604-021-04969-w
Language English
Journal Microchimica Acta

Full Text