Microchimica Acta | 2021

Asymmetrically coating Pt nanoparticles on magnetic silica nanospheres for target cell capture and therapy

 
 
 
 
 

Abstract


A Janus cargo has been developed via the combination of magnetic mesoporous silica (MMS) with asymmetric decoration of Pt nanoparticles (PtNPs). Mesoporous morphology of MMS provides plenty of space for loading photosensitizers and targeting agents; the magnetic feature endows the as-formed nanospheres with satisfactory isolation function in removal of low abundant target cells. The excellent catalytic ability of PtNPs can effectively alleviate the hypoxia condition of tumor microenvironment via the decomposition of hydrogen peroxide (H2O2), as well as an O2-drived nanomotor for highly efficient drug release. Using CCRF-CEM as the model target cell, the Janus cargo is demonstrated to possess significantly improved performance in cell capture and photodynamic therapy. Specially, owing to the patchy Pt decoration, the loaded photosensitizers exhibit a more efficient release behavior. More importantly, asymmetric O2-emission from one side of the nanocargo acts as a driving force, which could effectively accelerate the motion ability of cargo in cell media, thus leading to an enhanced therapeutic effect compared with the traditionally symmetric nanocargo. This Janus cargo would offer a new paradigm to design highly efficient drug carrier for gaining an improved photodynamic therapy in hypoxic cancer cells.

Volume 188
Pages None
DOI 10.1007/s00604-021-05009-3
Language English
Journal Microchimica Acta

Full Text