Protoplasma | 2021

Comparative proteomics and variations in extracellular matrix of Candida tropicalis biofilm in response to citral.

 
 
 

Abstract


Candida tropicalis is an opportunistic human pathogen with an ability to cause superficial as well as systemic infections in immunocompromised patients. The formation of biofilm by C. tropicalis can cause dreadful and persistent infections which are difficult to treat due to acquired resistance. Presently, available anti-Candida drugs exhibit a high frequency of resistance, low specificity and toxicity at a higher dosage. In addition, the discovery of natural or synthetic anti-Candida drugs is slow paced and often does not pass clinical trials. Citral, a monoterpene aldehyde, has shown effective antimicrobial activities against various microorganisms. However, only few studies have elaborated the action of citral against the biofilm of C. tropicalis. In the present work, the aim was to study the fungicidal effect, differential expression of proteome and changes in extracellular matrix in response to the sub-lethal concentration (16\xa0µg/mL) of citral. The administration of citral on C. tropicalis biofilm leads to a fungicidal effect. Furthermore, the differential expression of proteome has revealed twenty-five proteins in C. tropicalis biofilm, which were differentially expressed in the presence of citral. Among these, amino acid biosynthesis (Met6p, Gln1p, Pha2p); nucleotide biosynthesis (Xpt1p); carbohydrate metabolism (Eno1p, Fba1p, Gpm1p); sterol biosynthesis (Mvd1p/Erg19p, Hem13p); energy metabolism (Dnm1p, Coa1p, Ndk1p, Atp2p, Atp4p, Hts1p); oxidative stress (Hda2p, Gre22p, Tsa1p, Pst2p, Sod2p) and biofilm-specific (Adh1p, Ape1p, Gsp1p) proteins were identified. The overexpression of oxidative stress-related proteins indicates the response of biofilm cell to combating oxidative stress during citral treatment. Moreover, the upregulation of Adh1p is of particular interest because it subsidizes the biofilm inhibition through ethanol production as a cellular response. The augmented expression of Mvd1p/Erg19p signifies the effect of citral on ergosterol biosynthesis. The presence of citral has also shown an increment in hexosamine and ergosterol component in extracellular matrix of C. tropicalis biofilm. Hence, it is indicated that the cellular response towards citral acts through multifactorial processes. This study will further help in the interpretation of the effect of citral on C. tropicalis biofilm and development of novel antifungal agents against these potential protein targets.

Volume None
Pages None
DOI 10.1007/s00709-021-01658-6
Language English
Journal Protoplasma

Full Text