Journal of Molecular Modeling | 2019

Relativistic spectral bounds for the general molecular potential: application to a diatomic molecule

 
 
 
 

Abstract


We tackle with the Dirac equation in the presence of the general molecular potential (GMP). The spin symmetric solution of the relativistic wave equation is obtained by considering the Pekeris-type approximation scheme to deal with the centrifugal term, and in order to solve second-order differential equation, the asymptotic iteration method (AIM) is used. The closed form of the energy eigenvalue equation is found out for any values of the angular momentum quantum number. We calculate the relativistic vibrational bound state energies of 51Δg state of Na2 molecule and compare them with the Rydberg–Klein–Rees (RKR) data. We show that relativistic vibrational energies of this molecule, which are found in the spin symmetric case, are more convenient with experimental RKR data than non-relativistic vibrational energies. We also obtain normalization constant by considering inductive approach and investigate the radial eigenfunctions and probability density functions corresponding to different eigenvalues graphically for the Na2(51Δg) molecule.

Volume 25
Pages 1-11
DOI 10.1007/s00894-019-4021-8
Language English
Journal Journal of Molecular Modeling

Full Text