Journal of Molecular Modeling | 2021

Theoretical investigations on the antioxidant potential of a non-phenolic compound thymoquinone: a DFT approach

 
 
 

Abstract


Thymoquinone (TQ) is a natural compound present in black cumin which possesses potent antioxidant activity without having any phenolic hydroxyl group which is responsible for antioxidant activity. In the present study, computational calculation based on density functional theory (DFT) was executed to assess systematically the antioxidant behavior of this compound by considering geometrical characteristics, highest occupied molecular orbital - lowest unoccupied molecular orbital (HOMO-LUMO), and molecular electrostatic potential (MEP) surface. Thermochemical parameters correlated to the leading antioxidant mechanisms such as hydrogen atom transfer (HAT), single electron transfer-proton transfer (SETPT), and sequential proton loss electron transfer (SPLET) were studied in gas and water media. In addition, the changes of thermochemical parameters such as free energy change (∆G) and enthalpy change (∆H) were computed for hydrogen abstraction (HA) from TQ to hydroxyl radical in gas and water phases to investigate its free radical scavenging potency. The low and comparable values of bond dissociation enthalpy (BDE), proton dissociation enthalpy (PDE), ionization potential (IP), proton affinity (PA), and electron transfer enthalpy (ETE) revealed the antioxidant activity. The ∆G and ∆H also indicated apposite thermodynamic evidence in favor of antiradical capability of TQ. The attack of the free radical occurred preferentially at 3CH position of the molecule.

Volume 27
Pages None
DOI 10.1007/s00894-021-04795-0
Language English
Journal Journal of Molecular Modeling

Full Text