Journal of Artificial Organs | 2021

In-vitro performance of a single-chambered total artificial heart in a Fontan circulation

 
 
 
 
 

Abstract


An in-vitro study was conducted to investigate the general feasibility of using only one pumping chamber of the SynCardia total artificial heart (TAH) as a replacement of the single ventricle palliated by Fontan circulation. A mock circulation loop was used to mimic a Fontan circulation. The combination of both ventricle sizes (50 and 70 cc) and driver (Freedom Driver and Companion C2 Driver) was investigated. Two clinical relevant scenarios (early Fontan; late Fontan) as derived from literature data were set up in the mock loop. The impact of increased transpulmonary pressure gradient, low atrial pressure, and raised central venous pressure on cardiac output was studied. From a hemodynamic point, the single-chambered TAH performed sufficiently in the setting of the Fontan circulation. Increased transpulmonary pressure gradient, from ideal to pulmonary hypertension, decreased the blood flow in combinations by almost 2 L/min. In the early Fontan scenario, a cardiac output of 3–3.5 L/min was achieved using the 50 cc ventricle, driven by the Companion C2 Driver. Even under pulmonary hypertension, cardiac outputs greater than 4 L/min could be obtained with the 70 cc pump chamber in the late Fontan scenario. In the clinically relevant Fontan scenarios, implementation of the single chambered TAH performed successfully from a hemodynamic point of view. The replacement of the failing univentricular heart by a single chamber of the SynCardia TAH may provide an alternative to a complex biventricular repair procedure or ventricular support in Fontan patients.

Volume None
Pages 1 - 8
DOI 10.1007/s10047-021-01273-5
Language English
Journal Journal of Artificial Organs

Full Text