Biomechanics and Modeling in Mechanobiology | 2019

A novel, FFT-based one-dimensional blood flow solution method for arterial network

 
 

Abstract


In the present work, we propose an FFT-based method for solving blood flow equations in an arterial network with variable properties and geometrical changes. An essential advantage of this approach is in correctly accounting for the vessel skin friction through the use of Womersley solution. To incorporate nonlinear effects, a novel approximation method is proposed to enable calculation of nonlinear corrections. Unlike similar methods available in the literature, the set of algebraic equations required for every harmonic is constructed automatically. The result is a generalized, robust and fast method to accurately capture the increasing pulse wave velocity downstream as well as steepening of the pulse front. The proposed method is shown to be appropriate for incorporating correct convection and diffusion coefficients. We show that the proposed method is fast and accurate and it can be an effective tool for 1D modelling of blood flow in human arterial networks.

Volume 18
Pages 1311 - 1334
DOI 10.1007/s10237-019-01146-0
Language English
Journal Biomechanics and Modeling in Mechanobiology

Full Text