Journal of plant research | 2021

Leaf productivity and persistence have been improved during soybean (Glycine max) domestication and evolution.

 
 

Abstract


Artificial and natural selection improved the leaf photosynthetic rate of soybean (Glycine max (L.) Merr. subsp. max). This change may be accompanied by unconscious, undesired changes in other leaf traits, such as decreased leaf persistence, if a finite resource was shared by two or more leaf traits-i.e., if they were traded off. We investigated leaf traits related to productivity (leaf photosynthetic rate, leaf nitrogen content, and stomatal conductance) and those related to persistence (leaf lifespan, leaf mass per unit area, and leaf bulk density) in one wild soybean line and three domesticated soybean lines (a landrace, an old cultivar, and a modern cultivar) in a three year experiment. Some leaf trait values increased while others did not change significantly during domestication and evolution. These results indicate that productivity-related leaf traits and persistence-related leaf traits are not negatively correlated. It was also found that the changes in productivity-related leaf traits and persistence-related leaf traits occurred at different times. Our results indicate that the productivity-related leaf traits and the persistence-related leaf traits have been independently selected for in soybean, and that they were not traded off. Combination of high leaf productivity and high leaf persistence would lead to higher lifetime leaf carbon gain and increased soybean yield.

Volume None
Pages None
DOI 10.1007/s10265-021-01263-x
Language English
Journal Journal of plant research

Full Text