Landslides | 2019

Empirical investigation of friction weakening of terrestrial and Martian landslides using discrete element models

 
 
 
 
 
 

Abstract


Understanding what controls the travelling distance of large landslides has been the topic of considerable debate. By combining observation and experimental data with depth-averaged continuum modelling of landslides and generated seismic waves, it was empirically observed that lower effective friction had to be taken into account in the models to reproduce the dynamics and runout distance of larger volume landslides. Moreover, such simulation and observation results are compatible with a friction weakening with velocity as observed in earthquake mechanics. We investigate here as to whether similar empirical reduced friction should be put into discrete element models (DEM) to reproduce observed runout of large landslides on Earth and on Mars. First we show that, in the investigated parameter range and for a given volume, the runout distance simulated by 3D DEM is not much affected by the number (i.e. size) of grains once this number attains ~\u20098000. We then calibrate the model on laboratory experiments and simulate other experiments of granular flows on inclined planes, making it possible for the first time to reproduce the observed effect of initial volume and aspect ratio on runout distances. In particular, the normalised runout distance starts to depend on the volume involved only above a critical slope angle >\u200916–19°, as observed experimentally. Finally, based on field data (volume, topography, deposit), we simulate a series of landslides on simplified inclined topography. The empirical friction coefficient, calibrated to reproduce the observed runout for each landslide, is shown to decrease with increasing landslide volume (or velocity), going down to values as low as 0.1–0.2. No distinguishable difference is observed between the behaviour of terrestrial and Martian landslides.

Volume 16
Pages 1121 - 1140
DOI 10.1007/s10346-019-01140-8
Language English
Journal Landslides

Full Text