Annals of biomedical engineering | 2021

Effects of Left Ventricular Hypertrophy and Myocardial Stiffness on Myocardial Strain Under Preserved Ejection Fraction.

 
 
 
 

Abstract


Despite numerous experimental observations regarding heart failure with preserved ejection fraction (HFpEF), which is characterized mainly by left ventricular hypertrophy and a left ventricular ejection fraction over 50%, myocardial dynamics under HFpEF have not yet been fully clarified, particularly regarding the relationship between myocardial strain distribution and myocardial work. To address this issue, we numerically investigated radial distribution of myocardial strain during a cardiac cycle with fixed internal volume at the end of the systolic and diastolic phases under different mechanical conditions, such as those involving myocardial thickness and elasticity of myocardial fibers. The myocardium was a modeled as a visco-hyperelastic continuous material. This model was taken into account that active contractile stress along the myocardial fiber direction depends on membrane potential change. Our numerical results showed that both radial and circumferential strains decreased as wall thickness increased, which reflected cardiac hypertrophy, but that myocardial work became larger than that observed with thin ventricular walls. Further, the change in left ventricular diastolic internal pressure caused circumferential strain, while fiber stiffness contributed to radial strain. Since peak circumferential strain was well estimated by the maximum difference between total internal and myocardial volumes, measuring the epicardial contraction rate should be helpful in understanding patients with HFpEF.

Volume None
Pages None
DOI 10.1007/s10439-020-02706-7
Language English
Journal Annals of biomedical engineering

Full Text