Biomedical Microdevices | 2019

Biodegradable batteries with immobilized electrolyte for transient MEMS

 
 
 

Abstract


Biodegradable batteries play an important role in fully degradable biomedical or environmental systems. The development of biodegradable batteries faces many challenges including power content, device compactness, performance stability, shelf and functional lifetime. In particular, a key driver in the lifetime and overall size of microfabricated biodegradable batteries is the liquid electrolyte volume. Harnessing liquid from the environment to serve as the battery electrolyte may, therefore, be desirable; however, for stable operation, maintaining a constant electrochemical environment inside the cell is required even in the presence of changing body or environmental conditions. We report a biodegradable battery featuring a solid electrolyte of sodium chloride and polycaprolactone. This approach harnesses the body fluid that diffuses into the cell as an element of the electrolyte; however, the large excess of sodium chloride suspended in the polycaprolactone holds intracell ionic conditions constant. A constant discharge profile can then be achieved even in the presence of varying external aqueous conditions, enabling compact, stable-performing cells. This design also features easy integration and automatic activation, providing a simplified strategy to fabricate batteries with long shelf life and desirable functional life span. In addition, the polymeric skeleton of the solid electrolyte system acts as an insulating layer between electrodes, preventing the metallic structure from short-circuit during discharge.

Volume 21
Pages 1-9
DOI 10.1007/s10544-019-0377-x
Language English
Journal Biomedical Microdevices

Full Text