Cytotechnology | 2021

Long non-coding RNA ZFAS1 exerts a protective role to alleviate oxygen and glucose deprivation-mediated injury in ischemic stroke cell model through targeting miR-186-5p/MCL1 axis

 
 
 
 
 

Abstract


In recent years, accumulating articles have revealed that long non-coding RNAs (lncRNAs) play crucial roles in ischemic stroke (IS). A previous study found that lncRNA zinc finger antisense 1 (ZFAS1) was down-regulated in IS patients compared with healthy controls. However, the precise function of ZFAS1 in IS and its associated mechanism remain unclear. Cell viability was assessed by cell counting kit-8 (CCK8) assay. Cell apoptosis was analyzed by flow cytometry. Western blot assay and quantitative real-time polymerase chain reaction (qRT-PCR) were conducted to measure protein and RNA expression. The interaction between microRNA-186-5p (miR-186-5p) and ZFAS1 or MCL1 apoptosis regulator, BCL2 family member (MCL1) was confirmed by dual-luciferase reporter assay, RNA-pull down assay and RNA immunoprecipitation (RIP) assay. IS cell model was established through exposing N2a cells to oxygen and glucose deprivation (OGD). OGD exposure restrained the viability and induced the apoptosis of N2a cells. OGD exposure down-regulated the expression of ZFAS1 and up-regulated the level of miR-186-5p in a time-dependent manner. ZFAS1 overexpression alleviated OGD-mediated injury in IS cell model. MiR-186-5p was identified as a direct target of ZFAS1, and OGD-induced injury in IS cell model was attenuated by the silence of miR-186-5p. MiR-186-5p interacted with the 3′ untranslated region (3′UTR) of MCL1 messenger RNA (mRNA). ZFAS1 positively regulated MCL1 mRNA expression by sequestering miR-186-5p in N2a cells. ZFAS1 overexpression-mediated protective effects in IS cell model were partly overturned by the overexpression of miR-186-5p. MCL1 silencing partly counteracted the protective effects mediated by miR-186-5p silencing in IS cell model. In conclusion, ZFAS1 overexpression exerted a protective role in IS cell model to attenuate OGD-induced injury through targeting miR-186-5p/MCL1 axis. ZFAS1/miR-186-5p/MCL1 signaling might be a novel diagnostic marker and promising treatment target for IS patients.

Volume 73
Pages 605 - 617
DOI 10.1007/s10616-021-00481-4
Language English
Journal Cytotechnology

Full Text