Environment, Development and Sustainability | 2021

Experimental, computational analysis of Butein and Lanceoletin for natural dye-sensitized solar cells and stabilizing efficiency by IoT

 
 
 
 
 
 
 
 
 

Abstract


The thoughtful implementation of Internet of Things (IoT) expertise to sustainable progress in environment friendly renewable energy sector is significant for future energy conversion, storage and usage. The exploration of IoT proficiency in restoring the fresh condition of natural dye-sensitized solar cells once again by refilling the photo-sensitizer from its dye-degraded condition is conceived. This concept will eliminate one of the key limitations of dye-sensitized solar cells in real-world application. Potential environment friendly organic dyes were separated from the Butea Monosperma petals and employed for proficient titanium dioxide (TiO2) photo-anodes. Butein and Lanceoletin are prominent colorants existent in the organic source (Butea Monosperma petals) and enhanced molecular structures premeditated. The colorant-sensitized TiO2 NPs underwent the structural, photosensitive, spectral and IV (current–voltage) readings. Comparative DFT (density functional theoretical) and experimental studies on the spectroscopic, electronic and nonlinear opto-response characteristics of Butein and Lanceoletin were performed. The change in HOMO–LUMO energy which governs kinetic steadiness, chemical reactivity, chemical softness, hardness and MEP (molecular electrostatic potential) of molecules has been intended at B3LYP@6-311G (d, p). Environment friendly, price-effective NDSSCs were made by using organic photo-anodes.

Volume None
Pages 1 - 16
DOI 10.1007/s10668-021-01810-5
Language English
Journal Environment, Development and Sustainability

Full Text