Journal of Assisted Reproduction and Genetics | 2021

miR-219a suppresses human trophoblast cell invasion and proliferation by targeting vascular endothelial growth factor receptor 2 (VEGFR2)



Objective Vascular endothelial growth factor (VEGF) plays a critical role in regulating trophoblast cell invasion and proliferation, involved in a variety of pregnancy complications, such as spontaneous abortion and pre-eclampsia. Numerous studies have revealed that microRNAs (miRNAs) are participated in a series of molecular processes that regulate cell function, such as cell invasion, proliferation, and apoptosis. Vascular endothelial growth factor receptor 2 (VEGFR2), a receptor of VEGF, has been shown to be involved in trophoblast function. However, the relation between miRNA and VEGFR2 and their role in trophoblast function remain to be elucidated. Methods The effect of miR-219a on the trophoblast function has been explored using luciferase reporter, transwell, qRT-PCR, western blot, bromodeoxyuridine (BrdU), ELISA, immunofluorescent staining, and tube formation assays. Results In the current study, we observed that through targeted inhibition of VEGFR2 expression by miR-219a, the function of VEGFR2 as well as the downstream PI3K/AKT/NF-κB signaling pathway were suppressed, leading to suppression of trophoblastic proliferation and invasion. Moreover, upregulation of VEGFR2 restored the miR-219a–inhibited cell proliferation, invasion, and tube formation. Conclusions These results revealed that miR-219a played crucial roles in negatively regulating trophoblastic proliferation and invasion by suppression of the PI3K/AKT/NF-κB signaling pathway by targeting VEGFR2, therefore serving as a potential treatment method for the complications of pregnancy caused by trophoblastic dysregulation.

Volume None
Pages 1-10
DOI 10.1007/s10815-020-02022-y
Language English
Journal Journal of Assisted Reproduction and Genetics

Full Text