Journal of Computer-Aided Molecular Design | 2021

Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions

 
 

Abstract


Machine learning (ML) enables modeling of quantitative structure–activity relationships (QSAR) and compound potency predictions. Recently, multi-target QSAR models have been gaining increasing attention. Simultaneous compound potency predictions for multiple targets can be carried out using ensembles of independently derived target-based QSAR models or in a more integrated and advanced manner using multi-target deep neural networks (MT-DNNs). Herein, single-target and multi-target ML models were systematically compared on a large scale in compound potency value predictions for 270 human targets. By design, this large-magnitude evaluation has been a special feature of our study. To these ends, MT-DNN, single-target DNN (ST-DNN), support vector regression (SVR), and random forest regression (RFR) models were implemented. Different test systems were defined to benchmark these ML methods under conditions of varying complexity. Source compounds were divided into training and test sets in a compound- or analog series-based manner taking target information into account. Data partitioning approaches used for model training and evaluation were shown to influence the relative performance of ML methods, especially for the most challenging compound data sets. For example, the performance of MT-DNNs with per-target models yielded superior performance compared to single-target models. For a test compound or its analogs, the availability of potency measurements for multiple targets affected model performance, revealing the influence of ML synergies.

Volume 35
Pages 285 - 295
DOI 10.1007/s10822-021-00376-8
Language English
Journal Journal of Computer-Aided Molecular Design

Full Text