J. Intell. Inf. Syst. | 2021

Uncertain distance-based outlier detection with arbitrarily shaped data objects

 
 

Abstract


Enabling information systems to face anomalies in the presence of uncertainty is a compelling and challenging task. In this work the problem of unsupervised outlier detection in large collections of data objects modeled by means of arbitrary multidimensional probability density functions is considered. We present a novel definition of uncertain distance-based outlier under the attribute level uncertainty model, according to which an uncertain object is an object that always exists but its actual value is modeled by a multivariate pdf. According to this definition an uncertain object is declared to be an outlier on the basis of the expected number of its neighbors in the dataset. To the best of our knowledge this is the first work that considers the unsupervised outlier detection problem on data objects modeled by means of arbitrarily shaped multidimensional distribution functions. We present the UDBOD algorithm which efficiently detects the outliers in an input uncertain dataset by taking advantages of three optimized phases, that are parameter estimation, candidate selection, and the candidate filtering. An experimental campaign is presented, including a sensitivity analysis, a study of the effectiveness of the technique, a comparison with related algorithms, also in presence of high dimensional data, and a discussion about the behavior of our technique in real case scenarios.

Volume 57
Pages 1-24
DOI 10.1007/s10844-020-00624-7
Language English
Journal J. Intell. Inf. Syst.

Full Text