Journal of Chemical Ecology | 2019

Pheromone Composition and Chemical Ecology of Six Species of Cerambycid Beetles in the Subfamily Lamiinae

 
 
 
 
 

Abstract


Cerambycid beetles of the subfamily Lamiinae use male-produced aggregation-sex pheromones that are attractive to both sexes. Terpenoid pheromones have been identified from species in the tribes Acanthoderini and Acanthocinini native to North and South America, comprised of ( E )-6,10-dimethyl-5,9-undecadien-2-one (geranylacetone), the structurally related 6-methylhept-5-en-2-one (sulcatone), and/or specific enantiomers or nonracemic ratios of enantiomers of the related compounds ( E )-6,10-dimethyl-5,9-undecadien-2-ol (fuscumol), its acetate ester, ( E )-6,10-dimethyl-5,9-undecadien-2-yl acetate (fuscumol acetate), and 6-methylhept-5-en-2-ol (sulcatol). Here, we present new information about the chemical ecology of six acanthoderine and acanthocinine species native to the eastern USA. The pheromone of Astyleiopus variegatus (Haldeman) previously was identified as a blend of ( S )-fuscumol and ( S )-fuscumol acetate, and we report here that geranylacetone is a synergistic component. Males of Aegomorphus modestus (Gyllenhal), Lepturges angulatus (LeConte), and Lepturges confluens (Haldeman) were found to produce similar blends composed of the enantiomers of fuscumol acetate and geranylacetone, whereas males of Astylidius parvus (LeConte) and Sternidius alpha (Say) produced both enantiomers of fuscumol together with ( R )-fuscumol acetate and geranylacetone. Field experiments with synthesized chemicals revealed that species with similar pheromone composition nevertheless differed in their responses to individual components, and to various blends of components, and in how attraction was influenced by chemicals that were pheromone components of other species. Sulcatone and/or sulcatol antagonized attraction of some species to pheromones of the geranylacetone class, suggesting that there is an adaptive advantage in an ability to detect these heterospecific compounds, such as in avoiding cross attraction to other cerambycid species, as yet unknown, that use pheromones composed of both chemical classes.

Volume 46
Pages 30-39
DOI 10.1007/s10886-019-01128-7
Language English
Journal Journal of Chemical Ecology

Full Text