Journal of muscle research and cell motility | 2021

Treadmill running prevents atrophy differently in fast- versus slow-twitch muscles in a rat model of rheumatoid arthritis.

 
 
 
 
 
 
 
 
 
 

Abstract


To investigate the effects of treadmill running on two different types of skeletal muscle, we established a rat model of collagen-induced arthritis (CIA). The skeletal muscles studied were the extensor digitorum longus (EDL), which is rich in fast-twitch muscle fibers, and the soleus, which is rich in slow-twitch muscle fibers. The histological and transcriptional changes in these muscles at 14 and 44\xa0days after immunosensitization were compared between rats that were forced to exercise (CIA ex group) and free-reared CIA rats (CIA no group). Change in protein expression was examined on day 14 after a single bout of treadmill running. Treadmill running had different effects on the relative muscle weight and total and fiber cross-sectional areas in each muscle type. In the soleus, it prevented muscle atrophy. Transcriptional analysis revealed increased eukaryotic translation initiation factor 4E (Eif4e) expression on day 14 and increased Atrogin-1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression on day 44 in the soleus in the CIA ex group, suggesting an interaction between muscle type and exercise. A single bout of treadmill running increased the level of Eif4e and p70S6K and decreased that of Atrogin-1 in the soleus on day 14. Treadmill running prevented muscle atrophy in the soleus in a rat model of rheumatoid arthritis via activation of mitochondrial function, as evidenced by increased PGC-1α expression.

Volume None
Pages None
DOI 10.1007/s10974-021-09610-0
Language English
Journal Journal of muscle research and cell motility

Full Text