Neurochemical Research | 2019

Axonal Protection by Tacrolimus with Inhibition of NFATc1 in TNF-Induced Optic Nerve Degeneration

 
 
 
 
 

Abstract


Tacrolimus, a calcineurin (CaN) inhibitor, has been used for treatment of refractory allergic ocular disease, although its role in optic nerve degeneration remains to be elucidated. In this study, we investigated whether tacrolimus modulates tumor necrosis factor (TNF)-mediated axonal degeneration and whether it alters nuclear factor of activated T cells (NFATc), a downstream effector of CaN signaling. Immunoblot analysis showed no significant difference in CaNAα protein levels in optic nerve on day 3, 7, or 14 after TNF injection compared with PBS injection. However, a significant increase in NFATc1 protein level was observed in optic nerve 7\xa0days after TNF injection. This increase was negated by simultaneous administration of tacrolimus. Administration of tacrolimus alone did not change the NFATc1 protein level in comparison to that observed after PBS injection. A significant increase in TNF protein level was observed in optic nerve 14\xa0days after TNF injection and this increase was prevented by tacrolimus. Immunohistochemical analysis showed the immunoreactivity of NFATc1 to be increased in optic nerve after TNF injection. This increased immunoreactivity was colocalized with glial fibrillary acidic protein and was suppressed by tacrolimus. Treatment of tacrolimus significantly ameliorated the TNF-mediated axonal loss. These results suggest that tacrolimus is neuroprotective against axon loss in TNF-induced optic neuropathy and that the effect arises from suppression of the CaN/NFATc1 pathway.

Volume 44
Pages 1726 - 1735
DOI 10.1007/s11064-019-02804-6
Language English
Journal Neurochemical Research

Full Text