Plant molecular biology | 2021

Insights into heat response mechanisms in Clematis species: physiological analysis, expression profiles and function verification.

 
 
 
 
 
 
 
 
 
 
 
 

Abstract


KEY MESSAGE\nOur results provide insights into heat response mechanisms among Clematis species. Overexpressing CvHSFA2 enhanced the heat resistance of yeast and silencing NbHSFA2 reduced the heat resistance of tobacco. Clematis species are commonly grown in western and Japanese gardens. Heat stress can inhibit many physiological processes mediating plant growth and development. The mechanism regulating responses to heat has been well characterized in Arabidopsis thaliana and some crops, but not in horticultural plants, including Clematis species. In this study, we found that Clematis alpina Stolwijk Gold was heat-sensitive whereas Clematis vitalba and Clematis viticella Polish Spirit were heat-tolerant based on the physiological analyses in heat stress. Transcriptomic profiling identified a set of heat tolerance-related genes (HTGs). Consistent with the observed phenotype in heat stress, 41.43% of the differentially expressed HTGs between heat treatment and control were down-regulated in heat-sensitive cultivar Stolwijk Gold, but only 9.80% and 20.79% of the differentially expressed HTGs in heat resistant C. vitalba and Polish Spirit, respectively. Co-expression network, protein-protein interaction network and phylogenetic analysis revealed that the genes encoding heat shock transcription factors (HSFs) and heat shock proteins (HSPs) may played an essential role in Clematis resistance to heat stress. Two clades of heat-induced CvHSFs were further identified by phylogenetic tree, motif analysis and qRT-PCR. Ultimately, we proposed that overexpressing CvHSFA2-2 could endow yeast with high temperature resistance and silencing its homologous gene NbHSFA2 reduced the heat resistance of tobacco. This study provides first insights into the diversity of the heat response mechanisms among Clematis species.

Volume None
Pages None
DOI 10.1007/s11103-021-01174-4
Language English
Journal Plant molecular biology

Full Text