Photosynthesis Research | 2019

Exogenous putrescine alleviates photoinhibition caused by salt stress through cooperation with cyclic electron flow in cucumber

 
 
 
 
 

Abstract


When plants suffer from abiotic stresses, cyclic electron flow (CEF) is induced for photo-protection. Putrescine (Put), a primary polyamine in chloroplasts, plays a critical role in stress tolerance. However, the relationship between CEF and Put in chloroplasts for photo-protection is unknown. In this study, we investigated the role of Put-induced CEF for salt tolerance in cucumber plants (Cucumis sativus L). Treatment with 90\xa0mM NaCl and/or Put did not influence the maximum photochemical efficiency of PSII (Fv/Fm), but the photoactivity of PSI was severely inhibited by NaCl. Salt stress induced a high level of CEF; moreover, plants treated with both NaCl and Put exhibited much higher CEF activity and ATP accumulation than those exhibited by single-salt-treated plants to provide an adequate ATP/NADPH ratio for plant growth. Furthermore, Put decreased the trans-membrane proton gradient (ΔpH), which was accompanied by reduced pH-dependent non-photochemical quenching (NPQ) and an increased the effective quantum yield of PSII (Y(II)). The ratio of NADP+/NADPH increased significantly with Put in salt-stressed leaves compared with the ratio in leaves treated with NaCl, indicating that Put relieved over-reduction pressure at the PSI acceptor side caused by salt stress. Collectively, our results suggest that exogenous Put creates an excellent condition for CEF promotion: a large amount of pmf is predominantly stored as Δψ, resulting in moderate lumen pH and low NPQ, while maintaining high rates of ATP synthesis (high pmf).

Volume None
Pages 1-12
DOI 10.1007/s11120-019-00631-y
Language English
Journal Photosynthesis Research

Full Text