Topics in Catalysis | 2021

The Role of Counterions in Intermolecular Radical Coupling of Ru-bda Catalysts

 
 

Abstract


Intermolecular radical coupling (also interaction of two metal centers I2M) is one of the main mechanisms for O–O bond formation in water oxidation catalysts. For Ru(bda)L2 (H2bda\u2009=\u20092,2′-bipyridine-6,6′-dicarboxylate, L\u2009=\u2009pyridine or similar nitrogen containing heterocyclic ligands) catalysts a significant driving force in water solution is the hydrophobic effects driven by the solvent. The same catalyst has been successfully employed to generate N2 from ammonia, also via I2M, but here the solvent was acetonitrile where hydrophobic effects are absent. We used a classical force field for the key intermediate [RuVIN(bda)(py)2]+ to simulate the dimerization free energy by calculation of the potential mean force, in both water and acetonitrile to understand the differences and similarities. In both solvents the complex dimerizes with similar free energy profiles. In water the complexes are essentially free cations with limited ion paring, while in acetonitrile the ion-pairing is much more significant. This ion-pairing leads to significant screening of the charges, making dimerization possible despite lower solvent polarity that could lead to repulsion between the charged complexes. In water the lower ion pairing is compensated by the hydrophobic effect leading to favorable dimerization despite repulsion of the charges. A hypothetical doubly charged [RuVIIN(bda)py2]2+ was also studied for deeper understanding of the charge effect. Despite the double charge the complexes only dimerized favorably in the lower dielectric solvent acetonitrile, while in water the separated state is more stable. In the doubly charged catalyst the effect of ion-pairing is even more pronounced in acetonitrile where it is fully paired similar to the 1+\u2009complex, while in water the separation of the ions leads to greater repulsion between the two catalysts, which prevents dimerization.

Volume None
Pages 1 - 9
DOI 10.1007/s11244-021-01492-3
Language English
Journal Topics in Catalysis

Full Text