World journal of microbiology & biotechnology | 2021

4-methoxybenzalacetone, the cinnamic acid analog as a potential quorum sensing inhibitor against Chromobacterium violaceum and Pseudomonas aeruginosa.

 
 
 
 
 

Abstract


The continuous increase in the incidence of infectious diseases and the rapid unchecked rise in multidrug-resistance to conventional antibiotics have led to the search for alternative strategies for treatment and clinical management of microbial infections. Since quorum sensing (QS) regulates numerous virulence determinants and pathogenicity in bacteria, inhibition of QS promises to be an attractive target for development of novel therapeutics. In this study, a series of cinnamic acid analogs and benzalacetone analogs were designed and synthesized, and their QS-inhibitory activities explored. We found that, among the test compounds, 4-methoxybenzalacetone (8) exhibited potent anti-quorum sensing property, as evidenced by inhibition of QS-controlled violacein production of Chromobacterium violaceum ATCC12472. The inhibitory activity of such a compound, which was the methyl keto analog of the corresponding cinnamic acid, was not only stronger than the parent cinnamic acid (1), but also superior to that of furanone, the reference drug. Based on our observations, its mechanism of quorum sensing inhibition is likely to be mediated by interference with N-acyl-homoserine lactones (AHL) synthesis. Moreover, 4-methoxybenzalacetone (8) also suppressed the production of pyocyanin, rhamnolipids and swarming motility of Pseudomonas aeruginosa, suggesting a broad spectrum of anti-QS activities of this compound. In terms of structure-activity relationship, the possible chemical substitutions on the scaffold of cinnamic acid required for QS inhibitory activity are also discussed. Since 4-methoxybenzalacetone (8) showed no toxicity to both bacteria and mammalian cells, our findings therefore indicate the anti-QS potential of this compound as a novel effective QS inhibitor.

Volume 37 9
Pages \n 153\n
DOI 10.1007/s11274-021-03119-x
Language English
Journal World journal of microbiology & biotechnology

Full Text