Molecular Imaging and Biology | 2021

Direct Comparison of [18F]F-DPA with [18F]DPA-714 and [11C]PBR28 for Neuroinflammation Imaging in the same Alzheimer’s Disease Model Mice and Healthy Controls

 
 
 
 
 
 
 
 
 
 
 

Abstract


In this study we compared the recently developed TSPO tracer [18F]F-DPA, with [18F]DPA-714 and [11C]PBR28 by performing in vivo PET imaging on the same Alzheimer’s disease mouse model APP/PS1-21 (TG) and wild-type (WT) mice with all three radiotracers. To compare the radiotracer uptake, percentage of injected dose/mL (%ID/mL), standardized uptake value ratios to cerebellum (SUVRCB), and voxel-wise analyses were performed. The peak uptake of [18F]F-DPA was higher than 4.3% ID/mL, while [18F]DPA-714 reached just over 3% ID/mL, and [11C]PBR28 was over 4% ID/mL in only one brain region in the WT mice. The peak/60-min uptake ratios of [18F]F-DPA were significantly higher (p\u2009<\u20090.001) than those of [18F]DPA-714 and [11C]PBR28. The differences in [18F]F-DPA SUVRCB between WT and TG mice were highly significant (p\u2009<\u20090.001) in the three studied time periods after injection. [18F]DPA-714 uptake was significantly higher in TG mice starting in the 20–40-min timeframe and increased thereafter, whereas [11C]PBR28 uptake became significant at 10–20 min (p\u2009<\u20090.05). The voxel-wise analysis confirmed the differences between the radiotracers. [18F]F-DPA displays higher brain uptake, higher TG-to-WT SUVRCB ratios, and faster clearance than [18F]DPA-714 and [11C]PBR28, and could prove useful for detecting low levels of inflammation and allow for shorter dynamic PET scans.

Volume None
Pages 1 - 10
DOI 10.1007/s11307-021-01646-5
Language English
Journal Molecular Imaging and Biology

Full Text