Environmental Science and Pollution Research | 2019

Enhanced photocatalytic activity of AgNPs-in-CNTs with hydrogen peroxide under visible light irradiation

 
 
 
 

Abstract


Silver nanoparticles in carbon nanotubes (AgNPs-in-CNTs) were prepared through a simple thermal decomposition method. Synthesized AgNPs-in-CNTs were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS). In the presence of hydrogen peroxide (H2O2), AgNPs-in-CNTs exhibited perfect photocatalytic activity in rhodamine B (RhB) degradation under visible light irradiation. Hydrogen peroxide (H2O2) concentration and initial pH values were comprehensively scrutinized. When the concentration of H2O2 was 20 mM, about 99.8% RhB (20 mg L−1) could be degraded within 50 min while the initial pH (3–10) values had a negligible effect on the degradation. From the investigations of Raman spectroscopy, transient photocurrent responses, photoluminescence, and radical quenching experiments, the findings suggest that under light irradiation, AgNPs-in-CNTs can absorb photons and generate photogenerated electrons through localized surface plasmon resonance (LSPR) effect, the photogenerated electrons react with H2O2 to produce ·OH radicals for decomposing RhB.

Volume 26
Pages 26389-26396
DOI 10.1007/s11356-019-05877-6
Language English
Journal Environmental Science and Pollution Research

Full Text