Environmental Science and Pollution Research | 2019

Improvement and application research of the SRM in alpine regions

 
 
 
 
 
 

Abstract


The simulation of snowmelt runoff in alpine mountainous areas is of great significance not only for the risk assessment of snowmelt flood in spring and summer, but also for the development and management of water resources in the basin. An improved snowmelt runoff model (SRM) is constructed based on the analysis of change characteristics of climate, runoff, and snow and ice cover in the middle and upper reaches of the Taxkorgan River in Xinjiang Province, China. Because of the large evaporation in the study basin, the evaporation loss is added to the model. The SRM and the improved SRM are calibrated and verified by using data such as temperature, precipitation, water vapor pressure, and snow-covered area (SCA) ratio in the study basin from 2002 to 2012. The results show that, compared with the SRM, the average Nash–Sutcliffe coefficient (NSE) of annual runoff simulation increases from 0.80 to 0.86 in the calibration and increases from 0.74 to 0.83 in the validation through the improved model, and the average runoff error reduces from − 12.8 to 1.32% in the calibration and reduces from − 20.0 to − 11.51% in the validation. After adding the measured flow rate for real-time correction, the average NSE of annual runoff simulation increases from 0.91 to 0.93 and the average annual runoff error reduces from − 7.76 to − 3.91% in the calibration. The average NSE increases from 0.85 to 0.89 and the average runoff error reduces from − 12.35 to − 2.76% in the validation. It indicates that the SRM structure with increased evaporation loss is more in line with the actual situation. The short-term simulation effect of the model is greatly improved by adding the measured flow rate for real-time correction. At the same time, the improved SRM and the hypothetical climate change scenario are used to analyze the impact analysis of the snowmelt runoff simulation in the partial wet year. The results show that in the case of rising temperature, the ice and snow ablation period is prolonged, and the annual runoff also changes significantly in time distribution. It is of guiding significance for the influence of climate change on the runoff of recharged rivers with ice–snow meltwater in the other alpine regions.

Volume 26
Pages 36798 - 36811
DOI 10.1007/s11356-019-06814-3
Language English
Journal Environmental Science and Pollution Research

Full Text