Environmental Science and Pollution Research | 2021

Synthesis of magnetic core-shell amino adsorbent by using uniform design and response surface analysis (RSM) and its application for the removal of Cu2+, Zn2+, and Pb2+

 
 
 
 
 

Abstract


The magnetic Fe3O4 was synthesized by using a one-step solvothermal method. Then, anhydrous ethanol as a solvent, tetramethyl ammonium hydroxide (TMAOH) as an auxiliary agent, tetraethyl orthosilicate (TEOS) as a silicon source, and (3-aminopropyl) triethoxysilane (APTES) as amino source were used to prepare Fe3O4@mSiO2-NH2 by using the sol-gel method. Uniform design U14*(145) and the response surface method (RSM) were used to optimize the synthesis ratio. According to the results of TEM, SEM, N2 adsorption–desorption test, VSM, and XRD, it found that the best coating effect obtained when the relative molar ratio of TMAOH:TEOS:APTES:Fe3O4 was 5:4:6:0.45. The results of EDS and elemental analysis confirmed the success of amino group coating; VSM magnetization after surface modification was 32 emu/g; BET results show that specific surface area is 236 m2/g, size 5 nm, and the pore volume is 0.126 cm3/g. The removal of Cu2+, Zn2+, and Pb2+ by Fe3O4@mSiO2-NH2 was studied at the optimal initial pH value 6 of the adsorption test system. The isothermal adsorption results show that the Langmuir model and Redlich–Peterson model are more suitable than the Freundlich model to describe the adsorption behavior, and Cu2+, Zn2+, and Pb2+ adsorption is mainly single molecular layer. The maximum adsorption capacity qm of the Langmuir model for Cu2+, Zn2+, and Pb2+ removal was 48.04 mg/g, 41.31 mg/g, and 62.17 mg/g, respectively. The adsorption kinetic rates of Cu2+, Zn2+, and Pb2+ on Fe3O4@mSiO2-NH2 relatively more suitable for pseudo-second-order kinetic model, i.e., R2, were ranged between 0.995 and 0.999, and the suitable reaction time was 60 min. These results proved that Fe3O4@m-SiO2-NH2 prepared by using this method is easy to synthesize, has easy recovery, is ecofriendly, and can be potential adsorbent for Cu2+, Zn2+, and Pb2+ removal.

Volume 28
Pages 36399 - 36414
DOI 10.1007/s11356-020-11840-7
Language English
Journal Environmental Science and Pollution Research

Full Text