Environmental Science and Pollution Research | 2021

Precipitation events impact on urban lake surface water temperature under the perspective of macroscopic scale

 
 
 
 

Abstract


Lake surface water temperature (LSWT) is an important factor affecting a lake’s ecological environment. In recent decades, LSWT worldwide has shown an increasing trend in the context of global climate change. This rising trend has been more evident in urban lakes. With the rapid development of urbanization, urban lakes are affected not only by climate warming but also by human activities. Among these factors, due to the increase in impervious surface coverage (ISC), the impact of thermal runoff pollution caused by precipitation events on urban lakes cannot be ignored. Therefore, this study used the Dianchi Lake watershed as a study area, and the surface water temperature of Dianchi Lake, the precipitation data, and the land use data were collected and analyzed. Based on these data, the influence of precipitation events on the surface water temperature of Dianchi Lake was analyzed. The research results show that under the background of different ISC levels and different growth rates of impervious surface area (ISA), precipitation events have different effects on the LSWT. When ISC is low and the growth rate of ISA is slow, the annual precipitation is negatively correlated with the annual average surface water temperature of Dianchi Lake ( r = − 0.183). When ISC is high and the growth rate of ISA is fast, the annual precipitation is positively correlated with the average annual surface water temperature of Dianchi Lake ( r = 0.65). With the increase in ISC, the correlation between seasonal precipitation and the average surface water temperature in Dianchi Lake changed from negative to positive in spring and autumn. Under the action of impervious surfaces, precipitation events have a warming effect on the surface water temperature of the lake, and this effect will be intensified with the increase in ISC.

Volume None
Pages 1-14
DOI 10.1007/s11356-020-12093-0
Language English
Journal Environmental Science and Pollution Research

Full Text