Environmental Science and Pollution Research | 2021

Source apportionment of PM2.5 during different haze episodes by PMF and random forest method based on hourly measured atmospheric pollutant

 
 
 
 
 
 

Abstract


Hourly measured PM2.5-bound species, gases, and meteorological data were analyzed by the PMF receptor model to quantify source contributions, and by the random forest to estimate decisive factors of variations of PM2.5, sulfur oxidation ratio (SOR), and nitrogen oxidation ratio (NOR) during different haze episodes. PM2.5 variation was influenced by CO (17%), SO2 (19%), NH3 (12%), O3 (10%), air pressure (P, 9.9%), and temperature (T, 10%) during the whole period. SOR was determined by SO2 (15%), temperature (T, 9.8%), relative humidity (RHU, 15%), and pondus hydrogenii (pH, 35%), and NOR was influenced by NOx (19%), O3 (14%), NH3 (13%), and RHU (15%). Three types of pollution episodes were captured. Process I was characterized by high CO (contributing 40% of PM2.5 concentration variation estimated by the random forest) due to coal combustion for heating during winter in northern China. According to the PMF, coal combustion (32%) and secondary sources (38%) were both the most important contributors in the first stage, and then, when the RHU increased to above 80%, the highest contribution was from secondary sources (40%). Process II was during the Spring Festival and was characterized by 8.8 μg m−3 firework contribution. High SO2 during this process, especially on the CNY’s Eve, was observed due to the firework displays, and SO2 gave a high contribution (24%) to PM2.5 variation. Process III showed high ions and high RHU in summer with sulfate and nitrate contributing 44% and 22%, respectively. Furthermore, meteorological parameters and NH3 play a key role on SOR and NOR.

Volume None
Pages 1 - 12
DOI 10.1007/s11356-021-14487-0
Language English
Journal Environmental Science and Pollution Research

Full Text