Environmental Science and Pollution Research | 2021

Impact of light quality on freshwater phytoplankton community in outdoor mesocosms

 
 
 
 
 
 
 

Abstract


In shallow lakes, wind wave turbulence alters underwater spectral composition, but the influence of this phenomenon on phytoplankton community structure is poorly understood. We used 100L mesocosms to investigate the influence of light quality on a natural phytoplankton community collected from Taihu Lake in China. The communities in mesocosms were exposed to sunlight filtered for white, blue, green, and red light, while wave-making pumps simulated wind wave turbulence similar to Taihu Lake. Over the course of experiment, each filtered light reduced the total phytoplankton abundance compared to white light. The mean abundance of phytoplankton in controls was 1.72, 1.78, and 7.89 times of that in the red, blue, and green light treatments. Red, blue, and green light significantly promoted the growth of cyanobacteria, green algae, and diatoms, respectively, and induced successional change of the phytoplankton species under the tested conditions. The proportion of Microcystis to total phytoplankton abundance in controls and red light shifted from 87.09% at the beginning to 37.95% and 56.30% at the end of the experiment, respectively, and maintained its dominance, whereas Microcystis lost its dominance and was replaced by Scenedesmus (53.78%) and Synedra (53.18%) in the blue and green light, respectively. Given the process of how these phytoplankton compete in designated spectrum, exploring these influences could help provide new insights into the dominance formation of toxic cyanobacteria.

Volume 28
Pages 58536 - 58548
DOI 10.1007/s11356-021-14812-7
Language English
Journal Environmental Science and Pollution Research

Full Text