Ionics | 2021

Highly efficient polymer electrolyte based on electrospun PEO/PAN/single-layered graphene oxide

 
 
 
 

Abstract


In this study, a quasi-solid polymer electrolyte based on poly(ethylene oxide)/poly(acrylonitrile) (PEO/PAN) incorporating different weight ratios of single-layered graphene oxide (GO) nanosheets was prepared via the electrospinning method. Various analyses, including SEM, TEM, AFM, and XRD, were implemented to investigate the electrospun membrane structure. The morphological investigation of the nanocomposite membranes demonstrated a uniform interconnected network of thin nanofibers with an average fiber diameter of 141 nm and high porosity of 94%. The addition of only a minimal amount of GOs (0.05 wt%) into the polymer host contributed effectively to reducing fiber mean diameter and the crystallinity degree of polymer matrix and improving the electrical conductivity of the fibrous membrane. Ultimately, EIS results exhibited a high ionic conductivity of 10.1 mS/cm at room temperature for GO-loaded membrane electrolyte, whereas it is only 3.7 mS/cm for the membrane without GO (~\u2009173% increase). The improvement of porosity, amorphous content, and electrical conductivity of the nanocomposite membrane upon incorporating a small amount of GOs was responsible for the higher ionic conductivity. These results present a highly efficient membrane electrolyte, a promising candidate for application in dye-sensitized solar cells.

Volume 27
Pages 3477 - 3487
DOI 10.1007/s11581-021-04105-x
Language English
Journal Ionics

Full Text