Food and Bioprocess Technology | 2021

Encapsulation of Magnesium with Lentil Flour by Using Double Emulsion to Produce Magnesium Enriched Cakes

 
 
 
 

Abstract


Magnesium, a vital mineral for the human body, should be encapsulated before addition into foods to avoid the drawbacks related to chemical reactions. In this study, double emulsion entrapment was applied to protect magnesium. Different concentrations (15, 20, 25, 30%) of lentil flour were used as the hydrophilic surfactant, and high-speed homogenizer and ultrasonic homogenizer were applied as the first step homogenization methods for preparing the double emulsions. Double emulsions were analyzed in terms of particle size and distribution, rheology, instant stability, long-term stability, encapsulation efficiency, morphology, and nuclear magnetic resonance (NMR) experiments. Double emulsions with lower particle size, higher viscosity, and higher stability were obtained at higher lentil flour concentrations. Stability of double emulsions increased from 67.6 to 76.0% when lentil flour concentration increased from 15 to 30%. Ultrasonic homogenization also contributed to produce double emulsions with higher stability (>\u200999%). Moreover, double emulsions were added into cake batter and their effects on cake quality and their baking stabilities and in vitro bioaccessibilities were analyzed. Results showed that double emulsion addition did not significantly affect the quality of cakes. In addition, cakes containing magnesium encapsulated in double emulsion had similar taste with magnesium free cakes. Double emulsions had about 79–82% higher baking stability than control. In in vitro magnesium bioaccessibility, results indicated that magnesium encapsulated in double emulsion could be digested as much as the uncoated magnesium. Thus, it can be concluded that double emulsion entrapment could be used for enrichment of foods with active valuable components like magnesium.

Volume 14
Pages 1773 - 1790
DOI 10.1007/s11947-021-02672-5
Language English
Journal Food and Bioprocess Technology

Full Text