Applied Biochemistry and Biotechnology | 2021

Harvesting of Rhodotorula glutinis via Polyaluminum Chloride or Cationic Polyacrylamide Using the Extended DLVO Theory

 
 
 
 

Abstract


Polyaluminum chloride (PAC) and cationic polyacrylamide (CPAM) play a crucial role for separating microorganisms from bulk media. However, the mechanism of adsorption between cells and flocculants remain to be further defined to improve the flocculation efficiency (FE) in extreme conditions. This study conducted the flocculation process of Rhodotorula glutinis induced by PAC and CPAM, firstly. The result demonstrated that CPAM possessed more efficient harvesting ability for R. glutinis compared to PAC. The difference of flocculation capacity was then thermodynamically explained by the extended DLVO (eDLVO) theory; it turned out that the poor harvesting efficiency of PAC was attributed to lacking of binding sites as well as low adsorption force within particles. Based on this, the FE of PAC to R. glutinis was mechanically enhanced to 99.84% from 32.89% with 0.2 g/L CPAM modification at an optimum pH of 9. Also, the paper will play a guiding role in the treatment of inorganic salt ions and organic matters in wastewater.

Volume 193
Pages 2717 - 2728
DOI 10.1007/s12010-021-03549-1
Language English
Journal Applied Biochemistry and Biotechnology

Full Text