Cardiovascular toxicology | 2021

Mitochondrial Sirtuins and Doxorubicin-induced Cardiotoxicity.

 
 
 

Abstract


Doxorubicin (DOX) is the most effective and extensively used treatment for many tumors. However, its clinical use is hampered by its cardiotoxicity. DOX-induced mitochondrial dysfunction, which causes reactive oxygen species (ROS) generation, cardiomyocyte death, bioenergetic failure, and decreased cardiac function, is a very important mechanism of cardiotoxicity. These cellular processes are all linked by mitochondrial sirtuins (SIRT3-SIRT4). Mitochondrial sirtuins preserve mitochondrial function by increasing mitochondrial metabolism, inhibiting ROS generation by activating the antioxidant enzyme manganese-dependent superoxide dismutase (MnSOD), decreasing apoptosis by activating the forkhead homeobox type O (FOXO) and P53 pathways, and increasing autophagy through AMP-activated protein kinase (AMPK)/mTOR signaling. Thus, sirtuins function at the control point of many mechanisms involved in DOX-induced cardiotoxicity. In this review, we focus on the role of mitochondrial sirtuins in mitochondrial biology and DOX-induced cardiotoxicity. A further aim is to highlight other mitochondrial processes, such as autophagy (mitophagy) and mitochondrial quality control (MQC), for which the effect of mitochondrial sirtuins on cardiotoxicity is unknown.

Volume None
Pages None
DOI 10.1007/s12012-020-09626-x
Language English
Journal Cardiovascular toxicology

Full Text