Molecular Neurobiology | 2019

Amyloid Precursor Protein Mediates Neuronal Protection from Rotenone Toxicity



Mitochondrial complex I dysfunction is the most common respiratory chain defect in human disorders and a hotspot for neurodegenerative diseases. Amyloid precursor protein (APP) and its non-amyloidogenic processing products, in particular soluble APP α (sAPPα), have been shown to provide neuroprotection in models of neuronal injury; however, APP-mediated protection from acute mitochondrial injury has not been previously reported. Here, we use the plant-derived pesticide rotenone, a potent complex I-specific mitochondrial inhibitor, to discover neuroprotective effects of APP and sAPPα in vitro, in neuronal cell lines over-expressing APP, and in vivo, in a retinal neuronal rotenone toxicity mouse model. Our results show that APP over-expression is protective against rotenone toxicity in neurons via sAPPα through an autocrine/paracrine mechanism that involves the Pi3K/Akt pro-survival pathway. APP−/− mice exhibit greater susceptibility to retinal rotenone toxicity, while intravitreal delivery of sAPPα reduces inner retinal neuronal death in wild-type mice following rotenone challenge. We also show a significant decrease in human retinal expression of APP with age. These findings provide insights into the therapeutic potential of non-amyloidogenic processing of APP in complex I-related neurodegeneration.

Volume 56
Pages 5471 - 5482
DOI 10.1007/s12035-018-1460-7
Language English
Journal Molecular Neurobiology

Full Text